Решаем диалектическую задачу с помощью схемы превращения - РАЗВИТИЕ ТВОРЧЕСКОГО МЫШЛЕНИЯ. РАБОТАЕМ ПО СКАЗКЕ - Каталог статей - МИШУТКИНА ШКОЛА

Суббота, 10.12.2016, 15:41
   МИШУТКИНА    ШКОЛА
Воспитываем и обучаем детей от одного года до десяти лет
Главная | Регистрация | Вход Приветствую Вас Гость
МИШУТКИНА ШКОЛА
ДЛЯ САМЫХ МАЛЕНЬКИХ
ПОЗНАЕМ МИР ВМЕСТЕ С МИШУТКОЙ
ЭСТЕТИЧЕСКОЕ ВОСПИТАНИЕ
НА ПОРОГЕ ШКОЛЫ
УМЕЛЫЕ РУЧКИ
ИГРОВАЯ КОМНАТА МИШУТКИ
РОДИТЕЛЯМ
Категории раздела
УЧИМСЯ СЧИТАТЬ [26]
УЧИМСЯ ИЗМЕРЯТЬ [17]
ПОЗНАЕМ МИР ВМЕСТЕ С МИШУТКОЙ [41]
СЮЖЕТНЫЕ КАРТИНКИ [24]
СТИХИ ДЛЯ ДЕТЕЙ [109]
ИГРЫ ДЛЯ ДЕТЕЙ [56]
МАЛЕНЬКИЙ ХУДОЖНИК [60]
РАСКРАСКИ ДЛЯ МАЛЫШЕЙ [119]
ИСКУССТВО ДЕТЯМ [183]
ГОЛОВОЛОМКИ [175]
УРОКИ ЛЕПКИ [73]
АППЛИКАЦИЯ [58]
СЕНСОРНОЕ РАЗВИТИЕ РЕБЕНКА [28]
ЗАГАДКИ [15]
ОБУЧЕНИЕ ДЕТЕЙ ГРАМОТЕ [134]
ПОДЕЛКИ [200]
СКАЗКОТЕРАПИЯ ДЕТСКИХ ПРОБЛЕМ [83]
ОТРАБАТЫВАЕМ ГРАФИЧЕСКИЕ НАВЫКИ [93]
РАЗВИВАЮЩИЕ ИГРЫ [11]
ЭНЦИКЛОПЕДИИ ДЛЯ ДЕТЕЙ [339]
НАУЧНЫЕ РАЗВЛЕЧЕНИЯ СО ЗНАЙКОЙ [76]
РАЗВИТИЕ МЫСЛИТЕЛЬНО-ПОЗНАВАТЕЛЬНЫХ ПРОЦЕССОВ [107]
РАБОТА ЛОГОПЕДА [153]
ПОЛЕЗНЫЕ СТАТЬИ ДЛЯ РОДИТЕЛЕЙ [56]
РАЗВИВАЮЩИЕ ДОМАШНИЕ ЗАДАНИЯ [100]
КОНСТРУИРОВАНИЕ ИЗ СТРОИТЕЛЬНОГО МАТЕРИАЛА [13]
РАЗВИТИЕ ТВОРЧЕСКОГО МЫШЛЕНИЯ. РАБОТАЕМ ПО СКАЗКЕ [31]
ЗАНЯТИЯ ПО ЛЕПКЕ И АППЛИКАЦИИ В ПОДГОТОВИТЕЛЬНОЙ ГРУППЕ [36]
ФОНЕМАТИКА [120]
ПРО ЖИВОТНЫХ [27]
ЛОГОПЕДИЧЕСКИЙ ФОЛЬКЛОР [34]
ФИЗИЧЕСКОЕ И ПСИХИЧЕСКОЕ РАЗВИТИЕ ДЕТЕЙ [308]
ПОЗНАЕМ МИР ВМЕСТЕ С МАМОЙ [36]
ПСИХОЛОГО-ПЕДАГОГИЧЕСКАЯ РАБОТА [71]
НОВОГОДНЯЯ КУТЕРЬМА [22]
Статистика

Онлайн всего: 11
Гостей: 11
Пользователей: 0
Форма входа

Главная » Статьи » РАЗВИТИЕ ТВОРЧЕСКОГО МЫШЛЕНИЯ. РАБОТАЕМ ПО СКАЗКЕ

Решаем диалектическую задачу с помощью схемы превращения

Цель. Решение проблемно-противоречивой ситуации с помощью диалектической схемы превращения.

Материалы. Картинки с изображением журавля, старика, скатерти, баранчика и сумы; черный и белый квадраты.

Диалектическая задача: каким был старик в сказке — умным или глупым?

«Формально-логическая ловушка»: дети обращают внимание поочередно то на те эпизоды, где старик повел себя «умно», то на те, где он ведет себя «глупо», не замечая превращения.

Методика проведения

Сегодня предметом обсуждения с детьми станет действие превращения. В сказке превращение происходит со стариком: после урока, преподанного журавлем, он сильно поумнел. Дети должны обнаружить, что хотя герой остался прежним, все же стал другим. Как ни странно, этот переход не так очевиден для детей: приходится задать дополнительные вопросы и даже перечитать отрывок сказки, чтобы они поняли: журавль старику ничего не подсказывал, старик сам догадался, но уже, разумеется, после того, как сума его проучила.

Как всегда при решении задачи надо создать для детей проблемную ситуацию, когда возникают разные варианты ответов. Именно эта неоднозначность и делает задачу задачей. Во время обсуждения важно не просто дать правильный ответ, но дать детям возможность порассуждать, отстаивая свою позицию.

Педагог спрашивает:

— Кто может вспомнить, что произошло со стариком в сказке?

Помогает детям вспомнить всю цепочку событий: спасение журавля, получение и потерю первого подарка, получение и потерю второго подарка, получение третьего подарка, урок, полученный от журавля, и вызволение всех остальных подарков. По ходу совместного рассказа на доске появляются картинки с изображениями старика и подарков.

Диалектическая задача.

— Старик в сказке был каким — умным или глупым, как вы считаете?

Как обычно педагог выслушивает версии и обращает внимание на их противоположность. Если вдруг все единодушно выскажутся только за ум или только за глупость, взрослый предлагает и другую версию. На этом этапе главное — услышать противоположные ответы и указать детям на их возможность. Диалектическая схема должна помочь детям «зафиксировать» противоположности.

Возвращение к решению диалектической задачи при помощи схемы.

— Сейчас внимательно выслушаем каждую точку зрения и все объяснения, но уже понятно, что у вас есть разные ответы: кто-то считает, что старик глупый, а кто-то — что он умный. Давайте обозначим «ум» белым квадратом, а «глупость» — черным.

В центре доски прикрепляется картинка со стариком, по разные стороны от нее — белый и черный квадраты.

— Значит, если мы считаем, что мужик умный — ему подходит белый квадрат, а если считаем, что он глупый — ему подходит черный квадрат.

— Ты говоришь, что мужик глупый. Объясни, почему ты так считаешь?

Тут достаточно краткого обоснования: владелец постоялого двора дважды обводил вокруг пальца старика, обманывал.

— Если мы считаем старика глупым, то какой квадратик ему подходит?

Черный квадрат прикрепляется под картинкой со стариком.

— А ты говоришь, что старик умный. А почему ты так считаешь?

Тут тоже пока достаточно краткого обоснования: старик в конце концов вернул себе подарки.

Белый квадрат прикрепляется рядом с черным. Этот момент очень важен: прежде чем показать ограниченность каждого ответа, надо чтобы дети увидели неоднозначность ситуации, возможность противоположных ответов.

Обоснование (доказательство) противоположных суждений.

— Как же так, у нас под картинкой со стариком сразу два квадрата: одни из вас говорят, что мужик умный, другие — что он глупый.

После этого можно уже начинать работать с каждой точкой зрения:

— Ты говоришь, что мужик умный. А в чем это проявилось? Как он свой ум проявил?

Дети должны вспомнить, что старик сам себе подарки вернул, перехитрив, в конечном итоге, владельца постоялого двора.

Только когда ум старика станет очевидным всем, можно переходить к контрвопросу:

— Вы говорите, что старик был умный. Но разве он не потерял скатерть и баранчика? Как же он лишился подарков? Вспомните, как он себя вел, когда приходил на постоялый двор?

Тут надо вспомнить подробности сказки и разные «промашки» старика: и то, что он хвастался, и то, что даже после второй подмены не заподозрил владельца постоялого двора, а потому и не проверил, что подарок ему подменили. После этого можно делать вывод:

— Вот видите: старик явно повел себя глупо! Значит, черный квадрат тут подходит?

Если дети соглашаются, стоит опять задать контрвопрос:

— Вы соглашаетесь, что старик был глупым, а разве он все время себя глупо вел? Было такое, что старик себя умно повел?

Если дети сами не вспомнят, можно им помочь:

— Журавль сказал старику, что это богатый мужик его обманывал или мужик сам догадался? Журавль подсказывал, как вызволить свои прежние подарки?

Почти наверняка мнения детей разойдутся: многие успели забыть эти важные подробности. Обязательно надо дать им возможность высказать противоположные суждения, однако эта ситуация имеет однозначное решение в тексте сказки. Можно предложить детям перечитать этот фрагмент.

— Сейчас я перечитаю этот кусочек сказки, а вы послушайте и скажите, кто же оказался прав: подсказывал журавль старику или нет.

Наверняка после такой просьбы дети будут очень внимательно слушать отрывок.

Затем педагог возвращается к проблемному вопросу.

Возвращение к решению диалектической задачи при помощи схемы.

— Получается, что старик умен: сам сообразил, как подарки вернуть, хотя журавль ему и помог. Так что и белый квадрат тут подходит. Как же быть? Как ответить на вопрос — умный старик или глупый?

Наверняка найдется ребенок, который скажет «а он и умный и глупый», но в данном случае это не будет соответствовать истине: ведь ум и глупость герой проявлял в разные моменты сказки.

Хорошо, если дети обратят внимание на то, что в начале сказки старик повел себя глупо, а потом — стал умным. За эту версию стоит ухватиться и поддержать ее:

— Так вот что: в начале сказки он глупо поступал, а в конце — умно!

Даже если слова уже произнесены, подлинное решение будет найдено только в том случае, если дети смогут изобразить его при помощи схемы.

— Но как же нам быть с квадратами? Как обозначить, что наш герой сначала был глупым, а потом поумнел? Нам для этого нужен один квадрат или оба?

Если дети ответят, что один, надо сразу убрать один из квадратов и показать, что тогда происходило в сказке:

— Ты говоришь, что надо оставить только белый квадрат, потому что старик, в конце концов, перехитрил богатого мужика? Но тогда вот что получается: старик был умным-разумным, впросак не попадал, никто его не обманывал.

— А ты предлагаешь оставить только черный квадрат? Но это будет означать, что старик так и не поумнел и так и остался без подарков.

Дети после этих вопросов еще раз обнаружат, что обозначение — это ответственный процесс, процесс понимания, что по обозначениям можно увидеть, как человек сказку понимает.

Диалектическое преобразование.

Педагог поддерживает версию о том, что стоит оставить два квадрата.

— Значит, оставить один квадратик нельзя. Оставляем два. А как бы вы прочитали схему — что тут написано?

Хорошо, если дети скажут, что старик превратился из глупого в умного. Если не скажут, это слово может произнести и воспитатель.

— Видите, как интересно получается: был глупым, а потом превратился в умного. Но посмотрим по нашим квадратикам, непонятно, что это превращение произошло: как будто это про разных людей — кто-то умный, а кто-то глупый. А у нас ведь один и тот же старик — был глупым, да поумнел. Как же нам на схеме это показать?

Если идея стрелки придет детям в голову — отлично, если нет — ее предлагает педагог.

— Так что обозначает эта схема? Кто может ее прочитать? Здесь зашифровано превращение.

С названиями умственных действий детей знакомить не надо, однако слово «превращение» для них привычно (именно потому что превращение — самая обычная из необычных вещей, которые происходят в жизни и сказках).

Провокационный вопрос.

Этот вопрос можно задать в конце, чтобы проверить, насколько детям удалось решить задачу, а не просто действовать по образцу.

— А может быть все же стоит обозначить старика только белым квадратом?

То, как дети будут отвечать на этот вопрос, и будет знаком самостоятельности решения задачи.

Педагог обязательно подводит итог, предложив ребятам:

— Смотрите, у нас получилась такая схема. Придут ваши мамы и папы вечером за вами и удивятся: «Что это за квадратики? Что они обозначают?» Они-то не умеют схемы «читать», а кто из вас может «прочитать» схему?

Хорошо, если кто-то из детей расшифрует схему так: старик в сказке сначала был глупым, а потом поумнел.

Категория: РАЗВИТИЕ ТВОРЧЕСКОГО МЫШЛЕНИЯ. РАБОТАЕМ ПО СКАЗКЕ | Добавил: admin (16.11.2013)
Просмотров: 308 | Теги: развитие творческого мышления дошко, сказкотерапия, эстетическое воспитание в детском с, развитие речи дошкольников, занятия в детском саду | Рейтинг: 5.0/1
ПРАВИЛА ПОВЕДЕНИЯ
КАК ВЕСТИ СЕБЯ В ДЕТСКОМ САДУ
КАК СЕБЯ ВЕСТИ
КАК СЕБЯ ВЕСТИ В ТРАНСПОРТЕ
КАК СЕБЯ ВЕСТИ У ВРАЧА
КАК СЕБЯ ВЕСТИ ДОМА
КАК СЕБЯ ВЕСТИ В ГОСТЯХ
ХОРОШЕЕ ПОВЕДЕНИЕ РЕБЕНКА
ПЕДАГОГАМ
ЛОГОПЕД
Поиск
МИШУТКА РЕКОМЕНДУЕТ









Пан Познавайка

Друзья сайта
  • Официальный блог
  • Сообщество uCoz
  • FAQ по системе
  • Инструкции для uCoz
  • Copyright MyCorp © 2016
    Яндекс.Метрика Яндекс цитирования